
Utilizing Web Scraping and Natural Language
Processing to Better Inform Pedagogical Practice

Stephanie Lunn
School of CS

Florida International University
Miami, FL 33199, USA

slunn002@fiu.edu

Jia Zhu
School of CS

Florida International University
Miami, FL 33199, USA

jzhu004@fiu.edu

Monique Ross
School of CS

Florida International University
Miami, FL 33199, USA

moross@fiu.edu

Abstract—This research full paper describes how web scraping
and natural language processing can be utilized to answer
complex questions in computer science education. In this work,
we apply connectivism as the theoretical framework, and demon-
strate how web scraping can be useful for extrapolating large
amounts of data from publicly available web pages to pool data
from a wider array of sources and to further knowledge in the
field. In addition, we discuss how natural language processing can
be used to reliably obtain salient information from textual data,
and how it can complement qualitative analysis. To illustrate
these techniques in practice, we provide a specific application
in which we examine the current trends in the job market
for computer science students. The information gathered in this
example provides additional areas for educational consideration,
such as offering students Python programming language and
machine learning. Also, the job postings delineate a clear need for
applicants to exhibit programming and testing skills. Although
programming may be taught already, testing is widely considered
a knowledge deficiency, which suggests that educators should
consider placing an increased emphasis on this area to ensure
their students are adequately prepared for their career endeavors,
and able to transfer the knowledge taught to critically assess and
debug their own programs.

Index Terms—Web scraping, natural language processing,
computing research, data acquisition

I. INTRODUCTION

Computer science education (CSE) is a unique interdis-
ciplinary field situated at the crossroads of education, psy-
chology, and computing fields (computer science, information
technology, and computer engineering) [1]. Applying diverse
theoretical frameworks and empirical evidence, strong research
works in the field provide useful data and information that
shape pedagogical practices. Typical methods and measures
include both quantitative and qualitative approaches, using
data gathered from interviews, direct observation, question-
naires, standardized tests, teacher-created tests, and a reliance
on existing data [2]. However, given the rapidly evolving
nature of technology itself, we suggest that researchers should
expand the current repertoire to include additional methods,
and potentially more automatized methods for gathering and
assessing information. Process automation refers to the use of
computers and software to complete tasks while minimizing
human intervention, and it can be beneficial in speeding up the
time to completion, or handling routine items [3]. Automating
tasks can go hand in hand with using the World Wide Web to

connect with students and researchers, and obtaining informa-
tion readily available to learn more about educational practices
and preferences, as well as the dissemination of results.

Connectivism is considered a relatively new learning theory
that has been suggested to be beneficial to the field of
education [4]–[6]. Its emphasis on collaboration, creativity,
and connectivity demonstrates that the capacity to know more
is of greater value than what is presently known. Furthermore,
connectivism draws attention to the benefits of non-human
appliances for human learning [4]. In this work, we discuss
how connectivism can provide a useful lens for researchers to
transverse knowledge networks and to consider how automated
approaches can be applied to gather and analyze information.
The research questions guiding this work are:

1) How can researchers extrapolate large amounts of data
from publicly available web pages to create datasets?

2) How can automated processing techniques be used to re-
liably obtain salient information from qualitative data?

To answer these questions we suggest two techniques with
numerous potential applications, web scraping [7] and Natural
Language Processing (NLP) [8], [9]. Although the techniques
themselves are not novel, they are rarely applied to CSE
research. Here, we describe them both and demonstrate the
benefits of their application with a specific example, in which
we examine the current trends in industry hiring of com-
puter science (CS) students. Implementing web scraping on
Indeed.com for job postings, we create a structured dataset.
Then, we apply NLP techniques to identity trends including
the major job titles, skills requested, salaries by city, and
degree preferences.

Knowledge of such information could be useful for higher
education’s consideration of future course material and could
also affect graduate employability. Furthermore, although prior
research has considered web scraping job postings, typically
literature has focused on information technology, or other spe-
cific areas like software testing, which may not be applicable
to all CS students [10]–[12]. In this work, we use the search
keywords “computer science” to create a broader look at the
field, and it also does so through consideration across multiple
cities in the United States, rather than studying job needs for
a single geographical region.



Fig. 1: A mapping of connectivism and its interrelated role with knowledge, educators, networks, and instructional design to
inform pedagogy. Also shows how web scraping and NLP can be applied to enhance quantitative and qualitative research.

In this document, we will discuss connectivism, the theo-
retical framework to guide the work in section II. Next, we
will cover the related work in the field in section III. We then
provide information about our application of web scraping and
NLP, and its importance in section IV. Section V includes
information about how these techniques can be applied, and
describes the tools and procedures implemented to extract job
information from postings in ”computer science.” After this,
we discuss the findings from the specific results of the example
in section VI. Finally, we provide a discussion of our findings
and conclude with suggestions for future work in section VII.

II. THEORETICAL FRAMEWORK

Connectivism is a framework credited to Siemens and
Downes, that views learning as a network phenomenon that has
its roots in technology and socialization [4]–[6], with episte-
mological roots in distributed knowledge [13]. The foundation
of the connectivist model considers the learning community as
a node within a larger network. Networks arise out of two or
more nodes that join to share resources, and knowledge is
distributed across the network and stored digitally [14]. An
individual’s knowledge is predicated on a system of networks
that fuel organizational knowledge, and can cyclically give
back into the system. This process ensures that learners are
able to update their own knowledge base to remain current
through their established connections [5], [15]. Moreover,
groups are able to define social networks towards common
goals to promote knowledge.

Connectivism further describes key principles in a digital
age [4], [16]. Apart from the emphasis on non-human ap-
pliances already mentioned, it also describes the importance
of using current and accurate information as the intent for
connectivist activities [5], [6]. Additionally, it stresses the ne-
cessity of filtering out extraneous and inapplicable information
for learning and decision making. Accordingly, what may be
the right answer at a particular moment in time, could shift
based on the climate affecting decisions [4].

Although connectivism has been challenged on the grounds
that knowledge is disparate from the process of learning and

education itself [17], proponents have suggested that through
engagement of learners in the development of their own
networks, meta-cognition results in deeper understanding [18].
It has been demonstrated to be a foundation through which
teaching and learning of digital technologies can be understood
and managed [15], [19]–[21]. We suggest it as an effective tool
via which researchers, educators, and students can benefit from
utilization of novel technologies to aid in learning and applied
pedagogical practice.

We describe an overview of this framework in Figure
1. Pruned to limit the scope [22], our model demonstrates
how connectivism is the central facet uniting knowledge,
educators, networks, and pedagogical frameworks. As it relates
to our work here, we focus on gathering and analysis of
quantitative and qualitative data, using web scraping and NLP,
to further knowledge. This information, in turn, can be used
to perpetuate knowledge development and additional inquiry
as these findings are disseminated, communicated, and then
further implemented by others. The relation to instructional
design arises through key characteristics of learning, and their
potential impact shaping items such as strategy and policy. The
network itself, comprised of educators, students, administra-
tors, and other entities, can lead to knowledge sharing through
research and/or everywhere, including social relationships and
the internet. Meanwhile, the role of the educator can take on
many forms, based on different definitions.

According to Drelxer [23], educators may include acting
as an information filer, facilitator, guide, researcher, and
change agent. However, Siemens [4] describes educators as
a combination of roles: knower, concierge assisting with
way-finding, modeler of behaviors rather than via direct in-
struction, network administrator, curator of potential learning
approaches, and evaluators [22]. Irrespective of the approach
taken though, educators clearly play an important role in the
network and in shaping education. Connectivism facilitates
continual learning and promotes discussion and collaboration,
to assist with decision making, understanding information, and
problem solving. Together, connectivist principles guide our



endeavor to integrate new techniques to further the knowledge
in computer science education so that it can ultimately enhance
student learning. Rather than just accumulating knowledge, it
is about using these techniques to obtain meaningful answers
to specific research questions. In this work, connectivism is
being used to justify the expansion of methods to include
NLP and other machine learning techniques to contribute to
the body of knowledge.

III. RELATED WORK

As mentioned, we apply connectivism as the guiding frame-
work to suggest web scraping and NLP are tools that can
be used to contribute to knowledge. In this section, we will
describe background information pertaining to web scraping
and NLP in sections III-A and III-B, respectively.

A. Web Scraping

There is an increasing amount of information available
online, connecting different entities and offering additional
sources of knowledge. For researchers looking for data to
improve pedagogy, input can be gathered from social media,
digital textbooks, logs/forums from Massive Open Online
Courses (MOOCs), and from school websites [24]. Since the
resources posted online are considered public, it allows content
retrieval of numerous pages and records.

Web scraping refers to the process of extracting unstructured
data from the internet, that can be harvested to build large
scale datasets of structured data [7], [25]. There are multiple
ways to obtain data from a website, although some are more
labor intensive than others. Web scraping can be conducted
manually, through a hired corporation, through an application
or browser extension, or through software. One of the easiest
involves directly copying and pasting material from a page,
however, this can be quite time consuming for larger quantities
of information [7]. In addition, if a website has its own
application programming interface (API), data can be retrieved
directly from it. Notwithstanding, each provider may have
different workflows to do so, there may be a high charge
to use the API, and the policies to access the data may be
unique [25]. Otherwise, the HTML and/or XML of the page
can be accessed directly to obtain useful information using
programming languages such as C/C++, PHP, Python, Node.js,
or R [7], [25], [26].

Since different sites are built using varied frameworks,
languages, and forms, it is important to consider different
options to find the right choice for a particular project [7], [25].
The source itself (such as brief tweets from Twitter, university
curricula, or more lengthy interview transcripts), the context
(looking at performance outcomes or student reactions), the
ultimate goal (contextual analysis, topic modeling, or classi-
fication), and the desired output (Excel or comma-separated
values (CSV) files) all should be taken into consideration [25].
Once the data is collected, it may require additional processing
and cleaning.

B. Natural Language Processing (NLP)

NLP is considered an emergent area that is concerned
with bridging the gap between humans and computers, and
involves using machines to process, interpret, and manipulate
language [8], [9]. With teachers, educators, and researchers
in mind, it can be used to help automate tasks that would
otherwise require manual work [24]. NLP can be useful for
rapidly analyzing electronic documents, interview transcripts,
or datasets containing text-based content [27].

As one of the major tasks of NLP, text mining is a process
by which useful knowledge is obtained from text that is free
or unstructured [28]. Discovering and obtaining meaningful
relationships may include information retrieval (which can
work in tandem with web scraping to obtain information from
a website, or may include document retrieval), text classifica-
tion, topic identification, or event extraction. Furthermore, it is
possible to use statistical-based, empirical approaches to the
processing of language, rather than purely linguistic theory.
However it should be noted that analysis of the syntactic and
morphological factors that contribute to the linguistic aspects
of text can ensure more rapid analysis [7], [8].

Multiple languages can be used for NLP tasks such as
Python, Java, C/C++, R, Prolog, or MATLAB [28]–[30].
However, Python is considered one of the easiest options since
it includes a number of tools, packages, and libraries that
have built in corpora and resources (such as grammars and
ontologies) to expedite NLP applications [31]. Although we
will describe some of these further in the methods of section V,
it should be noted that the Natural Language Toolkit (NLTK)
is a Python library which is a particularly great asset that is
well suited for research purposes [29], [31].

IV. OUR APPLICATION OF WEB SCRAPING AND NLP

Connectivism emphasizes expanding opportunities for
learning and sharing information distributed online. In this
paper, we will apply the techniques described to examine a
particular application of web scraping and NLP to assess fac-
tors that may contribute to CS students’ graduate employability
using jobs posted on the internet. Graduate employability is
typically defined by an ability to obtain a job, to maintain
that position, and then to find another [32]. Employability is
predicated on competence, and the assumption that graduates
will possess certain attributes and requirements for future jobs.

Although schools may teach theoretical understanding and
programming, the concepts taught and languages offered may
not align with what is presently required by the industry. Ac-
cording to the definition proposed by Rademacher and Walia, a
knowledge deficiency includes “any skill, ability, or knowledge
of concept which a recently graduated student lacks based on
expectations of industry or academia” [33]. While ultimately,
academic needs of the students must drive the development
of curricula, it is also necessary to ensure graduates are
prepared to address practical challenges pertaining to current
technologies, and to resolve knowledge deficiencies [33], [34].

Studies applying NLP in CSE are not common in current
literature, based on our literature search, however, there are



Fig. 2: Overview of process from web scraping to natural language processing using Python

some that perform trend analyses of jobs in computing fields
like Information Technology [10], [11], or for more specific
applications such as Big Data Software Engineering [35] or
Software Testing [12]. However, such papers and postings may
not be applicable for all computing students, and these are
often regionally limited to a particular city or state. Thus, in
our work, we consider an example in which we apply broader
search keywords that may encompass the range of options for
CS students, specifically examining positions pertaining to the
keywords “computer science.” Moreover, rather than focusing
on a single city or geographic area like other studies, we scrape
data from five different cities across the United States.

In addition to the broader research questions guiding this
work, the application we describe also includes the following,
example-specific, research questions:

1) What are the top positions being offered in the CS
industry?

2) What are the major skills that companies expect grad-
uates to have and are there any topics that companies
expect graduates to be familiar with?

3) Which cities offer the highest average annual salaries
for job seekers?

4) Which degrees are most requested in CS job postings?

V. METHODS

An overview of the procedure to obtain data from the web,
and the intermediate steps before the data can eventually be
used and analyzed to obtain useful knowledge are described
further in Figure 2. As demonstrated Python can be used for
the entire process, and web scraping can be achieved using
Python’s Beautiful Soup library, then the web data must be
exported to a usable format (such as a CSV file). Then, it
undergoes pre-processing to filter out and remove duplicates,
and then natural language processing can begin. Python’s
NLTK can be applied and the data can then be processed,
analyzed, and eventually used for visualization and reporting.
Below we describe a specific application of web scraping and
NLP, to examine a large dataset collected from Indeed.com.

We discuss the chosen programming language, Python, in
section V-A. Then we describe how web scraping and data
filtering were performed in section V-B. In section V-C we
review the NLTK. Next, we discuss how data was prepared
and pre-processed in section V-D. In section V-E, we review

the analysis and visualization tools further. Finally, we discuss
the manual validation of the results obtained in section V-F.

A. Programming Language

Python is considered a high-level, dynamic, object-oriented
programming language [31]. It is known for being quick and
simple, yet effective. Widely employed by researchers and in
industry, Python includes its own standard library, but also
allows external toolkits and libraries to be added for additional
functionalities. All web scraping and NLP were conducted in
our application using Python version 3.6.7.

B. Web Scraping and Data Filtering

We scraped data from Indeed.com, a job searching website.
The dataset that we created used “computer science” as the
job searching keywords, across five cities in the United States
ranked highly for tech talent, most jobs available, and with the
highest startup investment rates: New York City (New York),
San Jose (California), San Francisco (California), Washington
(District of Columbia), and Seattle (Washington) [36]–[38].

In addition, we specifically applied the following libraries
and packages:

• Beautiful Soup: A package useful for extraction of data
from HTML and XML files [39], we used BeautifulSoup4
for our web scraping, version 4.6.3.

• lxml: A Python library that is used to process XML and
HTML information [40], we used version 4.2.5.

Data was collected with the features described further in
Table I. After removing any duplicates based on the JobID, our
resulting dataset included n = 3,824 listings. This amounted to
770 from New York, 774 from San Francisco, 745 from San
Jose, 752 from Seattle, and 783 from Washington DC.

C. Natural Language Toolkit (NLTK)

For NLP, we utilized the NLTK, version 3.3. NLTK was
selected since it is well suited to linguistic tasks and comes
with explicit documentation. It can be utilized for a number
of linguistic processing tasks, such as tagging parts-of-speech,
as well as text classification [29], [31].

D. Data Preparation and Pre-Processing

For text analysis or fitting a machine learning model, it is
important to clean and process raw text into a usable form.
This requires first splitting text into its component words or



Feature Description of Feature Example(s)
JobID A unique ID associated with each posting p 9d81f582fa82816c; p 9e989fd2ee77c487
City City as search keywords and those New+York; Washington+DC; Seattle; San+Francisco; San+Jose

associated with the job posting
QueryTerms “computer science” for all postings computer+science

Title The job title posted for the position QA Analyst; Data Science Intern; Software Developer Intern; Program Manager,
Data Center Systems Engineering; Junior Programmer

Company The hiring company –None shown for privacy purposes–
Location Full address information listed –None shown for privacy purposes–
Salary Posted salary or salary range (if given) 16.19 - 20.76 an hour; 35000 a year; 51000 - 66000 a year

FullText The complete job description

successful candidate possess following 10 years bs engineering science languages c,
java, python, qt windows applications android applications preferred job type fulltime
engineering 10 years preferred education bachelor’s required location rochester, ny
14607 required location one location benefits offered paid time health insurance
dental insurance healthcare spending reimbursement accounts hsas fsas retirement
benefits accounts

Link Full link to access the job posting –None shown for privacy purposes–
PostDate When the job was posted 7 days; 10 days; 30+ days

TABLE I: Features collected from Indeed.com

“tokens” using the whitespace that occurs between words.
Then, it is important to remove additional barriers that could
otherwise confound the results like punctuation, and/or case
sensitivity. Typically, researchers will want to make all of
the text lowercase. Moreover, lemmatization of words and/or
stemming may be applied to further refine the text data and
to ensure comparable foundations or roots.

In our application, we applied the following specific modi-
fications [31]:

• Regular-Expression Tokenizer: Divides a string into
substrings using regular expressions, extracting alphabetic
sequences, monetary amounts, and any other consecutive
sequence not separated by whitespace.

• Brown Corpus: We removed 150 most common English
words based on Brown corpus, a million-word, 500
source, collection of text created at Brown University.

• WordNetLemmatizer: WordNet is a lexical database that
contains semantic relationships between words. We apply
the WordNet lemmatizer, using WordNet version 0.0.1b2.

• Stopwords: Stopwords or a stoplist are used when text
mining to remove words such as determiners or preposi-
tions that commonly occur in a language, and do not carry
meaning associated with concrete concepts. This may
include removal of words such as “the” or “a” to limit
querying to important terms. We use stop-words version
2018.7.23. In addition to common English stopwords, we
also included several domain-specific words that appear
in job descriptions at a high frequency such as disclaimers
to note the employer does not discriminate based on an
individual’s characteristics or preferences. Our custom
stoplist included items such as “sexual”, “orientation”,
“pregnancy”, “religion”, and “disability” to ensure the
discriminating power of our application was not affected
by the frequency of such words.

In addition to the text processing described above, we also
cleaned and processed the salary information. It is important to
note that not all the job postings included their salary. After
removing HTML tags, dollar symbols or other unnecessary
signs, we then separated the salary into a new feature we called

“PayFrequency” which extrapolated whether pay was offered
by year, month, week, day or hours. Then, depending on the
PayFrequency, all values were converted into an annual salary.
For example, any salary listed as monthly was multiplied by 12
to obtain the annual amount. The total number in the cleaned
salary dataset was n = 417 listings. In total, this amounted
to 109 from New York, 59 from San Francisco, 60 from San
Jose, 56 from Seattle, and 133 from Washington DC. It should
be noted that this significantly reduced dataset was only used
for evaluating salary information, and the complete set was
used for all other evaluations.

Furthermore, job postings were examined for degree in-
formation. Although some postings specified a Bachelor of
Science (B.S.) or Bachelor of the Arts (B.A.), others simply
specified a Bachelor’s degree. Likewise, for Master’s degrees,
some specified a Master’s directly, whereas others specifically
requested a Master of Science (M.S.) or a Master of Business
Administration (M.B.A.). For doctoral level, postings either
requested a Doctorate or they may have asked for a Doctor
of Philosophy (Ph.D.). Other than specifically requesting or
“Associate’s degree”, postings also included either Associate
of Science (A.S.) or an Associate of Arts (A.A.) or simply
an “Assoc. degree” at this level of degree. Since a single
job posting may request more than one degree, the degree
information was split into fourteen categories to better capture
the degree requirements: bachelor only, master only, doctorate
only, associate only, associate and bachelor, associate and
master, associate and doctorate, bachelor and master, bachelor
and doctorate, master and doctorate, associate and bachelor
and master, associate and bachelor and doctorate, bachelor and
master and doctorate, and all 4 combined (bachelor and master
and doctorate and associate). Among the list examined for all
five cities, there were n = 2,109 mentions of degrees.

E. Data Analysis and Visualization

Data Analysis and visualization was performed using the
following libraries [31]:

• WordCloud: Bigrams are when two words occur con-
secutively in a sequence, and a trigram refers to three
consecutive words. We visualized our bigrams using



WordCloud, a data visualization technique that illustrates
text data with the size of each word in the cloud corre-
sponding to its frequency in the text [41]. We applied a
WordCloud package for Python, version 1.6.0.

• Pandas: Used for data manipulation and analysis, we
applied version 1.0.1 for analysis of cities and salaries.

• Matplotlib: Used to generate diagrams, histograms, and
plots, we applied version 3.1.3.

• NumPy: The numerical mathematics extension of Mat-
plotlib, we used version 1.18.1.

F. Validation

To confirm the validity of the results identified using NLP,
a subset of 50 randomly-selected postings were manually
inspected to confirm the data pulled accurately portrayed the
description listed. Additionally, using Excel to inspect the
.csv, the job titles column was examined to confirm the top
titles. Moreover, the presence of the top 20 most frequent
terms, bigrams, and trigrams in the job descriptions were
analyzed with a find all function to ensure reliability during
the automated analysis.

VI. RESULTS

The results are described further, by section of the job
listings assessed, with the information gathered from the job
titles described in section VI-A and information from the
job descriptions pertaining to requested skills, programming
languages, and areas of knowledge described in section VI-B.
Information about the salaries offered for for posted positions
is in section VI-C. We later discuss what types of degrees are
requested by potential employers in section VI-D.

A. Assessing Job Titles

Using descriptive statistics to group from the entire dataset,
we obtained a list of the top job titles obtained using the search
keywords “computer science.” Then the NLTK was applied,
and after tokenizing, removing punctuation, and using the
WordNet Lemmatizer, the entire job title list was traversed to
obtain frequencies of the bigrams and trigrams associated with
the titles. The resulting counts, pertaining to the frequency
these titles appeared in the dataset are shown in Table II. The
most frequently offered position for job seekers was Software
Engineer, followed by Data Scientist.

B. Assessing Job Descriptions

Using the NLTK on large bodies of text in the complete job
descriptions, after removal of stopwords and 150 of the most

Job Title Term Frequencies
Software Engineer 446
Data Scientist 117
Software Developer 80
Data Analyst 68
Software Development Engineer 52
Business Analyst 32
Machine Learning Engineer 24
Java Developer 21
Full Stack Developer 16

TABLE II: Frequency of top CS job titles

Fig. 3: WordCloud of most frequent bigrams

common words (based on the Brown corpus), 89.82% con-
tent remained. We identified that among the skills requested,
testing and programming were among the most important (oc-
curring 2,031 and 2,008 times, respectively), and Python was
the most requested programming language (occurring 1,496
times), followed by Java (occurring 1,253 times). In addition
to collecting bigram frequencies, we utilized a WordCloud
to illustrate the most frequent bigrams in our text (replacing
spaces with an underscore), as demonstrated in Figure 3.
Interestingly, “Machine Learning” was the top bigram present
in the job descriptions (occurring 1,617 times), highlighting a
growing emphasis on this area in computing.

C. Salary

As previously described, salary information was not avail-
able for all postings, and accordingly was only analyzed for
417 for which it did exist. After salary was pre-processed
to provide an annual value for all, as previously described,
we grouped the average salary for each city in United States
Dollars (USD). A comparison of each average, by city, is
illustrated in Figure 4. As shown, San Francisco had the
highest average salary at $122,647.71, and New York had
the lowest average at $79,852.75. Among the cities sampled,
the annual salaries ranged from $28,600 to $250,000, with a
median salary of $88,400.00 dollars.

D. Degree Breakdown

We used term frequency to examine the job descriptions for
the types of degrees employers were looking for. Since it is un-
known if these mentions were merely the minimum required,
or preferred degrees for a particular listing, we grouped by
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Fig. 5: Degrees requested for CS positions

how the degrees were mentioned (either in singularity or with
other degrees). The degree breakdown is shown in Figure 5.

There are fourteen different categories for combinations of
the degree requirements presented in the job postings. In the
figure, any pairings of degrees (from the list described in
section V-D) which occurred at less than 1% were grouped
into a category called “Other.” The “Other” category included
combinations such as Associate & Master, all four degrees,
etc. It should be noted that “Combined 3 Degrees” is a term
which refers to a job description requesting a Bachelor’s level,
Master’s level, and Doctoral level degree, which occurred in
only 4.3% of the postings. The most requested attainment level
was Bachelor’s degree only, which occurred in 43.3% of the
postings. Comparatively, the postings that mentioned only a
Master’s degree or only a Doctorate degree occurred 18.4%
and 7.3% of the time, respectively. An associate’s degree was
requested by itself only 1.1% of the time. The remainder of the
postings requested more than one degree, or were willing to
accept multiple levels of attainment. For the most part, these
were presented as the minimum degree requirements or the
preferred degree requirements in the job postings.

From the pie chart we can see that the majority of postings
with degree requirements, did request at least a Bachelor’s de-
gree. However, there were a significant percentage of postings
that did request a graduate level degree as well. Thus, although
a Bachelor’s may be the minimum expected, more than half
of the postings with degree information may prefer a higher
level degree for CS related jobs.

VII. DISCUSSION AND CONCLUSIONS

Web scraping and NLP can be useful tools to extract
and analyze non-trivial knowledge from free text, such as
job descriptions. Whether the aim is quantitative counts of
term frequency, or qualitative examination of content, these
approaches are beneficial to research and to using online
connections to enhance the overall knowledge, as described by
connectivism. We discuss our application, looking at industry
trends for postings in computer science in section VII-A. Then
we discuss how web scraping and NLP are useful, in general,
for computer science education in section VII-B. We close
with conclusions in section VII-C.

A. Our Application of Computer Science Jobs
In terms of our specific application, web scraping data from

Indeed.com revealed several important insights that could be

useful for educators and administrators. Although it is not
the purpose of higher education to serve industry, considering
what skills could enhance graduate employability is some-
thing that would be beneficial to both sides. As emphasized
in connectivism, expanding the knowledge in the field is
ultimately beneficial for informing instructional design and
affecting pedagogical practice. While ultimately, curricula are
meant to be solely focused on catering to students’ academic
needs, being informed about what industry expects and giving
consideration to best practices can enhance students’ success
in their field [34]. Accordingly, creating effective computing
curricula not only requires teaching fundamentals and theo-
ries, but also resolving knowledge deficiencies, and offering
practical applications and recent technological advancements
that could be important to the discipline [11], [33].

Programming and testing had a high occurrence in the post-
ings. Although both may be taught already, their importance
should not be neglected. Previous work in both academia and
industry have demonstrated that programming and software
testing are knowledge deficiencies for students and newly hired
software developers [33], [42], [43]. Accordingly, these may
be areas that require additional exploration, and for which
universities may want to consider placing additional emphasis
or adjusting their current teaching. Based on prior work,
students’ system testing skills are particularly poor, and it has
been demonstrated that students may be unable to properly use
test coverage tools [42]. Furthermore, qualitative interviews
with new graduates has mentioned that they would prefer
less emphasis on theory, and increased focus on practical
applications and writing tests. Moreover, students would prefer
for testing to be taught earlier in their education, and have
commented that it would be beneficial to include testing during
programmatic development to adjust the mindset so that when
coding, consideration is always given to this area as well [44].

In addition to the skills described, and as evidenced by
the most frequent bigram in postings, machine learning is
presently a topic growing in demand, and perhaps could or
should be included as an elective course to further prepare
students for opportunities in the field. Alternatively as has been
demonstrated previously, applications of machine learning
could be folded into other courses to enhance student learning,
or incorporated as a theme to unify topics in artificial intelli-
gence and ground it in CS [45]. Furthermore, given the ease
and power of Python, and that it is the programming language
mentioned most frequently in job descriptions, schools not
offering it already may want to consider its inclusion. Both
adjustments may help students to develop their abilities in
areas relevant to developing their careers.

There were limitations to the example we demonstrated as
well. First, computer science is a dynamic field, and industry
requirements are constantly changing in terms of the skills,
abilities, and knowledge expected from hirees. It should be
noted that the data collected was obtained in January 2020,
which represents only a slice of potential shift in postings
that may occur over a more lengthy timeframe. Furthermore,
the data collected was obtained using the keywords “computer



science.” Going forward it would be valuable to consider either
a longitudinal or a cross-sectional analysis of postings, as well
as to explore additional keywords to create a wider scope
for study. In addition, for the degree information we imple-
mented a manual approach using a pre-defined term dictionary.
However, more advanced techniques can be employed such as
concept mapping or modeling job descriptions.

B. Web Scraping and NLP for Computer Science Education

With an increasing need to obtain quality data for CSE re-
search, web scraping presents a real opportunity to gather large
quantities of unstructured information rapidly. It is accurate,
and can be easy to implement. Furthermore, it allows acquiring
unstructured information from the web, and can put it in a
usable format for further analysis. Web scraping could be used
for collecting admissions information from different college
websites, or for assessment of standardized test materials.

Web scraping can be a useful way to obtain information
to create novel datasets, but it has its limitations as well.
Although setting up the program to extract the data may
be a one-time investment, actually pulling large quantities of
information can take time, depending on the processing power
of computer and/or the network connection. Based on the size
of the dataset desired, this must be accounted for. In addition,
once the data is collected, some fields may be incomplete, or
data may be missing. As such, it is important to pre-process
the data appropriately.

In the realm of CSE and research, NLP can be used to
process text and linguistic information in meaningful ways
including understanding spoken language dialogue, web scrap-
ing to build data sets, data mining, entity recognition, infor-
mation retrieval, information extraction, and the assessment of
qualitative data [24], [31]. NLP is a tremendous asset for au-
tomating the process of extrapolating concepts, keywords, and
relevant information from large quantities of text. It could also
be used for summarizing qualitative articles and interviews, as
well as student feedback. Furthermore, concept mapping and
dynamic modeling may provide organization, structure, and
representation as well as additional information recovery. In
addition, processing language could be used to examine the
corpora of dialogue between tutors and students, and to assess
classroom dialogue between teachers and students [24].

NLP-based technology has many important applications,
from its use as an education tool to its use as an educator
[24], [46]. MOOCs draw on connectivist principles to facilitate
access to software and systems to promote learning and
sharing. However, MOOCs are environments where the student
to teacher ratio can be widely disproportionate, and utilizing
rapid analysis can assist in pruning through lengthy forums
and posts. NLP could also be used to help draw instructors
attention to students that may require assistance [24]. Addi-
tionally, it could be applied to create curricula or materials
to evaluate students [47], [48], or for scoring students [49],
[50]. Moreover, intelligent dialogue-based tutoring systems
could be used to further knowledge for students that may
require additional support. Although it is unlikely computers

can replace humans, and indeed students score higher when
working with a human tutor than a computer tutor [51], it still
could provide a way to increase access for students and to offer
additional resources to compliment their classroom education.

NLP also has its own caveats. Although a computer may
be able to follow explicit commands and rules, it is unable to
extrapolate anything except what it is programmed to do. For
example, when parsing through content, it may be harder to
convey sarcasm or emotions, obscuring the intended meaning
if analyzing dialogue between teachers and students. Like
with any program, there is also the possibility of an inherent
programmer bias, and algorithmic accountability must be con-
sidered. It is always important to think about what dictionaries
are applied to text, and what information is relevant to ensure
empirical methods are applied for analysis.

Although web scraping and NLP do not need to entirely
replace other methods for processing and evaluation, they
can be beneficial for answering novel questions/problems, and
can compliment other techniques. By introducing reliable and
reproducible methods for data analysis and model building,
and utilizing stepwise procedures that adhere to scientific
principles, NLP can be applied to validate qualitative data as
well. Using systematic methodologies could provide empirical
results that demonstrate rigorous experimental practice for
evaluating such data, expanding the knowledge in the field,
which in turn could be used to aid in educational development.
We hope that going forward, CSE researchers will consider
applying these techniques to their own work either as a
primary method, or as a secondary means of confirmation.

C. Conclusion

In this work, we have demonstrated techniques that could
be utilized for numerous applications to further knowledge
in CSE. Additionally, we provided a specific example of an
application for these methods. The findings presented illustrate
that there are several important areas to consider addressing
in curricula revisions to bolster graduate employability.

To summarize, programming and testing are considered
widely important skills for obtaining a job in CS. Moreover,
knowledge of Python is often requested, and machine learning
is a knowledge area that students may need to be familiar with.
Furthermore, it should be noted that the methods suggested
in this example could be built upon to collect data over a
longer timeframe, or automated for further data analysis using
increasingly sophisticated modeling techniques.

In general, we show that the application of web scraping
and NLP are useful in obtaining and analyzing pertinent infor-
mation from internet sources. Individually or in combination,
they can expedite manual tasks, and can be used with other
techniques for additional validation. Since new information
is constantly being generated [6], finding new acquisition
methods can only serve to benefit education. Considering the
principles of connectivism, we propose that going forward,
computer science educators should contemplate utilizing the
tools described to further their own work, to improve transfer
of knowledge and to inform pedagogical practice.
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